
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Planning in Artificial Intelligence
The intelligent way to do things

COURSE: CS60045

1

Pallab Dasgupta
Professor,
Dept. of Computer Sc & Engg

Exercise
Consider the problem of swapping the contents of two
registers, A and B. For a programmer, this is very easy,
but suppose we wish to ask a robot to figure out how to
write such a code. Suppose we pose it as the following
planning problem in STRIPS:
Op(ACTION: Start,

EFFECT: Contains(A, X) ∧ Contains(B, Y))
// Register A contains X, Register B contains Y

Op(ACTION: Finish,
PRECOND: Contains(B, X) ∧ Contains(A, Y))

// The following action assigns the content v1 of register
r1 to register r2 which contained v2
Op(ACTION: Assign(r1, v1, r2, v2),

PRECOND: Contains(r1, v1) ∧ Contains(r2, v2),
EFFECT: Contains(r2, v1))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Exercise
Consider the problem of swapping the contents of two
registers, A and B. For a programmer, this is very easy,
but suppose we wish to ask a robot to figure out how to
write such a code. Suppose we pose it as the following
planning problem in STRIPS:
Op(ACTION: Start,

EFFECT: Contains(A, X) ∧ Contains(B, Y))
// Register A contains X, Register B contains Y

Op(ACTION: Finish,
PRECOND: Contains(B, X) ∧ Contains(A, Y))

// The following action assigns the content v1 of register
r1 to register r2 which contained v2
Op(ACTION: Assign(r1, v1, r2, v2),

PRECOND: Contains(r1, v1) ∧ Contains(r2, v2),
EFFECT: Contains(r2, v1))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

Start

Finish

Assign(A, X, B, Y) Assign(B, Y, A, X)

Contains(A, X), Contains(B, Y)

Contains(A, X), Contains(B, Y)

Contains(B, X)

Contains(B, Y), Contains(A, X)

Contains(A, Y)

Contains(B, X), Contains(A, Y)

Observe that the steps of the plan cannot be executed in any order to
achieve the swapping the contents of the registers. The robot is not at
fault, since it was not told that assigning the contents of register r1 to
register r2 destroys the previous content of register r2. Can you rewrite
the action so that the correct consequence of the action is captured?

Exercise
Consider the problem of swapping the contents of two
registers, A and B. For a programmer, this is very easy,
but suppose we wish to ask a robot to figure out how to
write such a code. Suppose we pose it as the following
planning problem in STRIPS:
Op(ACTION: Start,

EFFECT: Contains(A, X) ∧ Contains(B, Y))
// Register A contains X, Register B contains Y

Op(ACTION: Finish,
PRECOND: Contains(B, X) ∧ Contains(A, Y))

// The following action assigns the content v1 of register
r1 to register r2 which contained v2
Op(ACTION: Assign(r1, v1, r2, v2),

PRECOND: Contains(r1, v1) ∧ Contains(r2, v2),
EFFECT: Contains(r2, v1) ∧ ¬Contains(r2, v2))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

Start

Finish

Assign(A, X, B, Y) Assign(B, Y, A, X)

Contains(A, X), Contains(B, Y)

Contains(A, X), Contains(B, Y)

Contains(B, X) ∧ ¬Contains(B, Y)

Contains(B, Y), Contains(A, X)

Contains(A, Y) ∧ ¬Contains(A, X)

Contains(B, X), Contains(A, Y)

And now there is no order in which the steps can be executed due to a
cyclic ordering constraint.

Exercise
Consider the problem of swapping the contents of two
registers, A and B. For a programmer, this is very easy,
but suppose we wish to ask a robot to figure out how to
write such a code. Suppose we pose it as the following
planning problem in STRIPS:
Op(ACTION: Start,

EFFECT: Contains(A, X) ∧ Contains(B, Y))
// Register A contains X, Register B contains Y

Op(ACTION: Finish,
PRECOND: Contains(B, X) ∧ Contains(A, Y))

// The following action assigns the content v1 of register
r1 to register r2 which contained v2
Op(ACTION: Assign(r1, v1, r2, v2),

PRECOND: Contains(r1, v1) ∧ Contains(r2, v2),
EFFECT: Contains(r2, v1) ∧ ¬Contains(r2, v2))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

After the modification shown in blue, observe that no totally ordered
plan exists corresponding to the plan shown.

Now suppose we have a third register, C. Draw a partial order plan for
swapping A and B using C and show that it can then be totally ordered.

Start
Contains(A,X) ∧ Contains(B, Y)

|
Assign(A, X, C, v2)

Contains(C, X) ∧ ¬ Contains(C, v2)
|

Assign(B, Y, A, X)
Contains(A, Y) ∧ ¬ Contains(A, X)

|
Assign(C, X, B, Y)

Contains(B, X) ∧ ¬ Contains(B, Y)
|

Finish

Partial Order Planning

• Basic Idea: Make choices only that are relevant to solving the current part of the problem

• Least Commitment Choices
• Orderings: Leave actions unordered, unless they must be sequential
• Bindings: Leave variables unbound, unless needed to unify with conditions being achieved
• Actions: Usually not subject to “least commitment”

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

Example
• Initial plan

Plan(
STEPS: {

S1: Op(ACTION: Start,
EFFECT: At(Home) ∧ Sells(BS, Book)

∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)),

S2: Op(ACTION: Finish,
PRECOND: At(Home) ∧ Have(Tea)

∧ Have(Biscuits) ∧ Have(Book)),
},
ORDERINGS: {S1 S2},
BINDINGS: { },
LINKS: { })

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

S2: FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

S1: START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Actions:

Op(ACTION: Go(y),
PRECOND: At(x),
EFFECT: At(y) ∧ ¬At(x))

Op(ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))

ORDERINGS: {S1 S2}

The Partial Order Planning Algorithm

Function POP(initial, goal, operators)
// Returns plan

plan ← Make-Minimal-Plan(initial, goal)
Loop do

If Solution(plan) then return plan
S, c ← Select-Subgoal(plan)
Choose-Operator(plan, operators, S, c)
Resolve-Threats(plan)

end

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

POP: Selecting Sub-Goals

Function Select-Subgoal(plan)
// Returns S, c

pick a plan step S from STEPS(plan)
with a precondition C that has not been achieved

Return S, c

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 10

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 11

S2: FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

S1: START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

ORDERINGS: {S1 S2}

POP: Choosing operators

Procedure Choose-Operator(plan, operators, S, c)

Choose a step S’ from operators or STEPS(plan) that has c as an effect

If there is no such step then fail
Add the causal link S’ → c: S to LINKS(plan)
Add the ordering constraint S’ S to ORDERINGS(plan)

If S’ is a newly added step from operators then add S’ to STEPS(plan) and add
Start S’ Finish to ORDERINGS(plan)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 12

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 13

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))

At(y1) ∧ Sells(y1, Book)

BINDING: { x \ Book }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 14

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))

Buy(Tea) Buy(Biscuits)

At(y1) ∧ Sells(y1, Book) At(y2) ∧ Sells(y2, Tea) At(y3) ∧ Sells(y3, Biscuits)

BINDING: { x \ Book }

BINDING: { x \ Biscuits }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 15

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

{ y1 \ BS } { y2 \ TS } { y3 \ TS }BINDINGS

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 16

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Go(y),
PRECOND: At(x),
EFFECT: At(y) ∧ ¬At(x))

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(y1)

At(y1)

Go(TS)
¬ At(y2)

At(y2)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 17

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(Home)

At(Home)

The problem here is that
Go(BS) and Go(TS)
destroy each other’s
precondition. Neither can
precede the other.

POP: Resolving Threats

Procedure Resolve-Threats(plan)

for each S’ that threatens a link Si → c: Sj in LINKS(plan) do
choose either

Promotion: Add S’’ Si to ORDERINGS(plan)
Demotion: Add Sj S’’ to ORDERINGS(plan)

if not Consistent(plan) then fail

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 18

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 19

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(y2)

At(y2)

Can y2 be instantiated with
something else?

Indeed !!
We can try BS for example.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 20

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

POP: Resolving Threats

Procedure Resolve-Threats(plan)

for each S’ that threatens a link Si → c: Sj in LINKS(plan) do
choose either

Promotion: Add S’’ Si to ORDERINGS(plan)
Demotion: Add Sj S’’ to ORDERINGS(plan)

if not Consistent(plan) then fail

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 21

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 22

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

The red link prevents me
from going to TS before
buying the book

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 23

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book)

At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

Go(Home)

At(z)

¬ At(z)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 24

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book)

At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

Go(Home)

At(TS)

¬ At(TS)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 25

FINISH

Have(Book) ∧ Have(Tea) ∧ Have(Biscuits) ∧ At(Home)

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Buy(Book)

Buy(Tea) Buy(Biscuits)

At(BS) ∧ Sells(BS, Book)

At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits)

Go(BS)
¬ At(Home)

At(Home)

Go(TS)
¬ At(BS)

At(BS)

Go(Home)

At(TS)

¬ At(TS)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 26

FINISH

START

Buy(Book)

Buy(Tea) Buy(Biscuits)

Go(BS)

Go(TS)

Go(Home)

Partially instantiated operators

• So far we have not mentioned anything about binding constraints
• Should an operator that has the effect, say, ¬At(x), be considered a threat to the condition,

At(Home) ?
 Indeed it is a possible threat because x may be bound to Home

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 27

Dealing with potential threats

 Resolve now with an equality constraint
 Bind x to something that resolves the threat (say x = TS)

 Resolve now with an inequality constraint
 Extend the language of variable binding to allow x ≠ Home

 Resolve later
 Ignore possible threats. If x = Home is added later into the plan, then we will attempt to

resolve the threat (by promotion or demotion)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 28

Proc Choose-Operator(plan, operators, S, c)

choose a step S’ from operators or STEPS(plan) that has c’ as an effect
such that u = UNIFY(c, c’, BINDINGS(plan))

if there is no such step then fail
add u to BINDINGS(plan)
add the causal link S’→ c: S to LINKS(plan)
add the ordering constraint S’ S to ORDERINGS(plan)
if S’ is a newly added step from operators then

add S’ to STEPS(plan) and add Start S’ Finish to ORDERINGS(plan)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 29

Procedure Resolve-Threats(plan)

for each Si → c: Sj in LINKS(plan) do
for each S’’ in STEPS(plan) do

for each c’ in EFFECTS(S’’) do
if SUBST(BINDINGS(plan), c) = SUBST(BINDINGS(plan), ¬c’)
then choose either

Promotion: Add S’’ Si to ORDERINGS(plan)
Demotion: Add Sj S’’ to ORDERINGS(plan)

if not Consistent(plan) then fail

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 30

Monkey Bananas Problem

Assume that there is a monkey in a room with some bananas
hanging out of reach from the ceiling, but a box is available that
will enable the monkey to reach the bananas if he climbs on it.

• Initially, the monkey is at A, the bananas at B, and the box at
C.

• The monkey and box have height LOW, but if the monkey
climbs onto the box, he will have height HIGH, the same as the
bananas.

• The actions available to the monkey include GO from one
place to another, PUSH an object from one place to another,
CLIMB onto an object, and GRASP an object. Grasping results
in holding the object if the monkey and object are in the same
place at the same height.

• The monkey wants to get the bananas.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 31

Formulation
Initial State:

At(Monkey,A)

At(Bananas,B)

At(Box,C)

Height(Monkey,Low)

Height(Box,Low)

Height(Bananas,High)

Pushable(Box)

Climbable(Box)

Graspable(Bananas)

Goal State:

Have(Monkey, Bananas)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 32

Operators:

Go(x,y)
Precond: At(Monkey,x) AND Height(Monkey,Low)
Effect: At(Monkey,y) AND NOT At(Monkey,x)

Push(b,x,y)
Precond: At(Monkey,x) AND Height(Monkey,Low) AND

At(b,x) AND Pushable(b) AND Height(b,Low)
Effect: At(b,y) AND At(Monkey,y) AND

NOT At(b,x) AND NOT At(Monkey,x)

ClimbUp(b)
Precond: At(Monkey,x) AND Height(Monkey,Low) AND

At(b,x) AND Climbable(x) AND Height(b,Low)
Effect: On(Monkey,b) AND NOT Height(Monkey,Low) AND

Height(Monkey,High)

Grasp(b)
Precond: At(Monkey,x) AND Height(Monkey,h) AND

At(b,x) AND Graspable(b) AND Height(b,h)
Effect: Have(Monkey,b)

Door Locking System in a Car

I wish to determine whether I can possibly lock myself out of my car.

• Many predicates – whether I am inside / outside, whether the key is with me, inside, or outside the car, how the
car can be locked

• Using the classical key or key fob

• Using the lock arming feature

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 33

34

Known Adversarial Planning

Environment is the planner
■ It plans to drive the system to a bad state
■ It has a set of actions to choose from
■ It can choose to apply an action if its pre-condition is met

Controller is the adversary
■Distributed – comes from various sub-systems
■ Predictable: Will apply whenever applicable
■Known a priori
■ If multiple actions are applicable, then they may be applied in various sequences. The choice of the

sequence is with the planner

Control actions have priority over environment actions. Environment gets a chance only when no applicable
control actions remain.

35

Planning as Verification

Env
action

Safe & stable state, no applicable control actions

Safe but unstable state, control actions applicable

Unsafe state

Env
action

Control actions
(interleaved)

Control actions
(interleaved)

Env
action

Kamalesh Ghosh, Pallab Dasgupta and S. Ramesh,
Automated Planning as an Early Verification Tool for
Distributed Control, Journal of Automated Reasoning,
54 (1), 31-68, 2015.

	Planning in Artificial Intelligence�The intelligent way to do things
	Exercise
	Exercise
	Exercise
	Exercise
	Partial Order Planning
	Example
	Slide Number 8
	The Partial Order Planning Algorithm
	POP: Selecting Sub-Goals
	Slide Number 11
	POP: Choosing operators
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	POP: Resolving Threats
	Slide Number 19
	Slide Number 20
	POP: Resolving Threats
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Partially instantiated operators
	Dealing with potential threats
	Slide Number 29
	Slide Number 30
	Monkey Bananas Problem
	Formulation
	Door Locking System in a Car
	Known Adversarial Planning
	Planning as Verification

